Abstract
The microwave spectra of the van der Waals complexes acetone-20Ne and acetone-22Ne were measured using a cavity-based supersonic jet Fourier-transform microwave spectrometer in the region from 5 to 18 GHz. For these two isotopologues, both c- and weaker a-type transitions were observed. The transitions are split into multiplets due to the internal rotation of the two methyl groups in acetone. Initial electronic structure calculations were performed at the MP2/6-311++g (2d, p) level of theory and the internal rotation barrier height of the methyl groups was calculated to be ∼2.8 kJ/mol. The ab initio rotational constants were the basis for the spectroscopic searches, but the multiplet structures and floppiness of the complex made the quantum number assignment very difficult. The assignment was finally achieved with the aid of constructing closed frequency loops and predicting internal rotation splittings using the XIAM internal rotation program. The acetone methyl group tunneling barrier height was determined experimentally to be 3.10(6) kJ mol−1 [259(5) cm−1] in the acetone-Ne complex, which is lower than in the acetone monomer but comparable to the acetone-Ar complex (Kang et al., 2002). Experimental data and high-level CCSD(T)/aug-cc-pVTZ calculations suggest that the Ne atom lies directly above the plane formed by the carbonyl group and the two carbon-carbon bonds, which is different than the slightly offset position found previously in the acetone-Ar complex. Additionally, ab initio calculations and Quantum Theory of Atoms in Molecules analyses were used to analyze the methyl internal rotation motions in acetone and acetone-Ne.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.