Abstract
Vortex generators (VGs) have shown the potential to mitigate the train's operational instability issues caused by strong wind. Numerical simulations are used to predict the flow structures around a train with VGs of different heights. The improved delayed detached eddy simulation (IDDES) hybrid modeling method is adopted to predict the trailing vortices on the leeward field. The numerical method is validated by reproducing wind tunnel test results. The study results reveal that VGs are capable of reducing the rolling moment coefficient around the leeward rail of a train by about 5% ∼ 15% while keeping the drag of the train still lower than its operational drag without crosswind. The control mechanism lies on that the streamwise vortices generated by VGs are attracted to the large-scale trailing vortices, resulting in the pressure on the leeward wall rising. The differences in the domain frequencies between VGs and Baseline cases in POD modes indicate that the VGs changed the periodicity and symmetry of the vorticity fluctuation. This study provides a new method to improve the safety of trains under crosswinds.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Computational Fluid Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.