Abstract

Let R be a commutative ring with nonzero identity, Z(R) be its set of zero-divisors, and if a ∈ Z(R), then let ann R (a) = {d ∈ R | da = 0}. The annihilator graph of R is the (undirected) graph AG(R) with vertices Z(R)* = Z(R)∖{0}, and two distinct vertices x and y are adjacent if and only if ann R (xy) ≠ ann R (x) ∪ ann R (y). It follows that each edge (path) of the zero-divisor graph Γ(R) is an edge (path) of AG(R). In this article, we study the graph AG(R). For a commutative ring R, we show that AG(R) is connected with diameter at most two and with girth at most four provided that AG(R) has a cycle. Among other things, for a reduced commutative ring R, we show that the annihilator graph AG(R) is identical to the zero-divisor graph Γ(R) if and only if R has exactly two minimal prime ideals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call