Abstract

For more than 60 years, scientists have been fascinated by the fact that magnetic fields even weaker than internal hyperfine fields can markedly affect spin-selective radical-pair reactions. This weak magnetic field effect has been found to arise from the removal of degeneracies in the zero-field spin Hamiltonian. Here, I investigated the anisotropic effect of a weak magnetic field on a model radical pair with an axially symmetric hyperfine interaction. I found that S-T± and T0-T± interconversions driven by the smaller x and y-components of the hyperfine interaction can be hindered or enhanced by a weak external magnetic field, depending on its direction. Additional isotropically hyperfine-coupled nuclear spins preserve this conclusion, although the S → T± and T0 → T± transitions become asymmetric. These results are supported by simulating reaction yields of a more biologically plausible, flavin-based radical pair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.