Abstract

An analysis for the prediction of wrinkling in curved sheets during metal forming is presented. Using a local approach, similar to that employed for conventional forming limit diagram representations, we construct “wrinkling limit curves” (WLCs) which represent the combinations of the critical principal stresses for wrinkling in curved sheet elements. Wrinkling limit curves are first determined using a bifurcation analysis for plastic buckling in short-wavelength shallow modes. A study of the effects of material properties and sheet geometry on the critical conditions for wrinkling is carried out. We then analyse the effects of geometric imperfections on wrinkling. This analysis is based on the implementation of a finite element scheme. The influence of nonproportional loading is also investigated. In our analysis the material is assumed to be isotropic, elastic-plastic with the plastic part modelled using both J 2 deformation theory and J 2 flow theory of plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call