Abstract

This work aims to obtain a hydrogel based on self-assembling RADA16-I with proper rheological properties for hemostasis application. Response surface methodology (RSM) was performed to predict the gelation and stiffness of the hydrogel in different concentrations of peptide and NaCl in water and blood serum milieus. Particle tracking microrheology technique was used to evaluate Brownian motion of polystyrene particles in the peptide solutions to obtain their trajectories and measure the viscoelastic properties (G'', G″, and tan δ). Formation of gel was influenced by the concentrations of peptide and salt and their interactions. Optimum response for maximizing elastic modulus was obtained in the presence of blood serum in comparison with water. Negative effect of excess amount of NaCl was predicted by RSM model and confirmed by animal study. Circular dichroism (CD) analysis showed formation of β-sheet secondary structure in water. On the other hand, in the presence of blood serum, tertiary structure was formed. Dimensional characterization of peptide fibers was performed by means of AFM. Peptide self-assembly in blood serum (pH around 7) which contains different ions, led to enhancing bonds between fibers, caused increasing the fiber diameter and length by 20 and 10 times, respectively. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 330-338, 2019.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.