Abstract

Abstract Reliability assessments of repairable (electronic) equipment are often based on failure data recorded under field conditions. The main objective in the analyses is to provide information that can be used in improving the reliability through design changes. For this purpose it is of particular interest to be able to locate ‘trouble-makers’, i.e. components that are particular likely to fail. In the present context, reliability is measured in terms of the mean cumulative number of failures as a function of time. This function may be considered for the system as a whole, or for stratified data. The stratification is obtained by sorting data according to different factors, such as component positions, production series, etc. The mean cumulative number of failures can then be estimated either nonparametrically as an average of the observed failures, or parametrically, if a certain model for the lifetimes of the components involved is assumed. As an example we here consider a simple component lifetime model based on the assumption that components are ‘drawn’ randomly from a heterogeneous population, where a small proportion of the components are weak (with a small mean lifetime), and the remaining are standard components (with a large mean lifetime). This model enables formulation of an analytical expression for the mean cumulative number of failures. In both the nonparametric and the parametric case the uncertainty of the estimation may be assessed by computing a confidence interval for the estimated values (a confidence band for the estimated time functions). The determination of confidence bands provides a basis for assessing the significance of the factors underlying the stratification. The methods are illustrated through an industrial case study using field failure data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.