Abstract
This paper introduces novel approaches for analysis of the double wishbone suspension mechanism. In the literature, to the best of our knowledge there is no analysis study available for the double wishbone mechanism that is performed “analytically”. Initially kinematic model of the double wishbone mechanism is established. Then, a kinematic analysis methodology is presented. This analysis procedure is carried out analytically. The essential parameters; camber, caster, kingpin, toe angles, and track variation are defined according to the kinematic model. A double wishbone suspension mechanism is synthesized as an example by using the method presented in this study. Variations of the essential parameters with respect to wheel travel are plotted. The synthesized mechanism is established both in Lotus Suspension Analysis and Catia software and same results with the analytical model are obtained. Thus, it is verified that mechanisms of different dimensions can be analyzed and parameters can be optimized precisely and swiftly by using this analytical approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Mechanical Design, Systems, and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.