Abstract
The spectrum of amplification of terahertz radiation in a structured active graphene bilayer consisting of two identical periodic graphene microribbon arrays separated by a thin dielectric barrier layer is theoretically investigated. The system supports optical and acoustic plasmon modes. The resonant frequencies of the optical and acoustic modes change oppositely with the dielectric-layer thickness, which allows plasmon-mode anticrossing. It is shown that the investigated graphene structure is characterized by a strong plasmon response and giant terahertz-radiation amplification at plasma resonance frequencies in the vicinity of the anticrossing between the optical and acoustic plasmon modes at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.