Abstract

We develop module algebra for structured specifications with model oriented denotations. Our work extends the existing theory with specification building operators for non-protecting importation modes and with new algebraic rules (most notably for initial semantics) and upgrades the pushout-style semantics of parameterized modules to capture the (possible) sharing between the body of the parameterized modules and the instances of the parameters. We specify a set of sufficient abstract conditions, smoothly satisfied in the actual situations, and prove the isomorphism between the parallel and the serial instantiation of multiple parameters. Our module algebra development is done at the level of abstract institutions, which means that our results are very general and directly applicable to a wide variety of specification and programming formalisms that are rigorously based upon some logical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.