Abstract

A commutative Banach algebra is called symmetric if, regarded as a function algebra on its maximal ideal space, it is closed under complex conjugation. Varopoulos, [5], proved the asymmetry of the tensor algebra , where T is the unit circle. It is the object of this paper to prove the asymmetry of the Schur multipliers of the space , where m is the Lebesgue measure. In the second part of the paper we study the Hankel multipliers of the space and give an application to it.1. The asymmetry of. Let C(T) denote the space of continuous functions on T and A(T) be the space of those functions in C(T) that have absolutely convergent Fourier series. Consider the mapping F: C(T) → C(T × T) defined by F(f)(x, y) = f (x + y).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.