Abstract

In this study Al5083–Al2O3–TiO2 hybrid surface nanocomposite was successfully prepared by friction stir processing (FSP). The effects of different combination of rotational and travel speed of tool were investigated. The samples were characterized by optical and scanning electron microscopy (SEM), microhardness and undergone tensile and wear tests. Based on the maximum tensile strength and hardness value, optimum rotational speed of 710 rpm and travel speed of 20 mm/min was achieved. The microhardness and tensile strength of the as-received alloy and specimens having optimum surface nanocomposite were about 80 Hv, 285 MPa, 140 Hv and 375 MPa, respectively. Surface nanocomposites showed significantly lower friction coefficients and wear rates than those obtained for substrate. Based on scanning electron microscopy tests, abrasive wear as dominant wear mechanism was detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.