Abstract

The L ↔ Al + Al11Ce3 technologically important eutectic transformation in Al–Ce binary alloys, containing from 5 to 20 wt.% Ce and ranging from hypo- to hypereutectic compositions, was examined along with the microstructure and properties of its solidified product. A combination of thermal analysis and metallography determined the coordinates of the eutectic point at 644.5 ± 0.6 °C and 10.6 wt.% Ce, clarifying the existing literature ambiguity. Despite the high entropy of melting of the Al11Ce3 phase, in hypoeutectic alloys the eutectic was dominated by the regular morphology of periodically arranged lamellae, typical for non-faceted systems. In the lamellar eutectic, however, the faceting of Al11Ce3 was identified at the atomic scale. In contrast, for hypereutectic compositions, the Al11Ce3 eutectic phase exhibited complex morphology, influenced by the proeutectic Al11Ce3 phase. The Al11Ce3 eutectic phase lost its coherency with Al; it was deduced that a partial coherency was present only at early stages of lamellae growth. The orientation relationships between the Al11Ce3 and Al in the eutectic structure, leading to partial coherency, were determined to be Al ║ Al11Ce3 with Al ║ Al11Ce3 and Al ║ Al11Ce3 with Al ║ Al11Ce3. The Al11Ce3 phase with a hardness of 350 HV and Al matrix having 35 HV in their eutectic arrangement formed in situ composite, with the former playing a role of reinforcement. However, the coarse and mostly incoherent Al11Ce3 eutectic phase provided limited strengthening and the Al–Ce alloy consisting of 100% eutectic reached at room temperature a yield stress of just about 70 MPa.

Highlights

  • This paper describes the L ↔ Al + Al11Ce3 eutectic transformation in the Al–Ce binary alloys within a wide range of Ce contents along with morphology, crystallography, and properties of the solidified product

  • The computer-aided cooling curves thermal analysis was selected as the main tool to determine the thermal events taking place during the solidification of Al–Ce alloys over a wide range of Ce contents

  • Since a cooling curve represents the balance between the evolution of heat in the sample and the heat flow away from the sample, the beginning of the solidification can be determined by the latent heat associated with a liquid–solid transformation

Read more

Summary

Introduction

Aluminum alloysA, dluume itnouamcAoallmluombyisni,nadutuimoentaoollafoctyhosem, idrbuliinegahttoitoawnAceoolifugmtmhhbtei,ininhruailmigtgihohantsltwloroefeynitsghg,hetdhtiu,r,helaiinggtodhhtasdtwcuroeecnmitgiglbhitthityn,,,aahhtniigadovhndesuotfcrettinhligetyitrh, hl,iaagvnhedtbwdeueenicgtihlitt,yh,ihgahvsetrength baleleonysp,rdouveentotoabceopmarotbtvriaenncattitivooenbbseoetraefutnttchrptaeurcirortaivlvliegemnhsattortweubrceietaiuglasrhtatitrln,amhmcitagiotvhedebrseiestarertnlrensunaipcggntretuomhrav,aopealdpnnmeldtiroacndatbetauiregociaetniltlsasti.rptiayTnpc,hltmhieicvaaodevtdeiesoettrnrinums.caetTgunherteaalpdfmpeetalaritcitumearteieaonlntsasil.nfTemhaetoudreertornifmatgheeenataplpfeliactautiroens. The boefatthtreacptriveesesntrtluyctapuvrreaasilleamnbtalletyegraoivrafaaldsitlheianseblmipesrogetdhrsaeedrnirnetlssaytgirsaeevtnahagpeitlipharlebiscnltearientoigngofrgnamttsdhh.eeTcsnhphiinearsengdstiheemstmnereitir,lcmyhwseatarhnveitiancashimlglafte,bhbaweltecnuhoigrinmcerghaedsbmeeiesnccoeihsmffaetnehcsitesiimivnree,sffatwretechntiicgvhtehbaetenciinnocmgreemasseiecndheaffneicstmiv,ewaht ich bec inavcraeilaasbelde tgermadpeesrtaeitsmutrpheeesri,arrtuestqrirenuescin,rrgereetdahqseubenidyrienatdgedmbvmyapeneaccrdhaevatdaunnriasecumest,do,rmaweiuqnohtuctoiiricvmreheaodsbtaeienvbdcdeyotameanmededrsvpoaaesiennrpraceaotefcusfdeeprceaadtsciue,vetserodiegmeaqnstuosigit,rinvaesdse, acabsonyncdotarnadotevlrlroaionlnslgicpneagdcepahudatesosemisgornatsip,viaedslaycnodntareorlolisnpgace des eprahtausreess,rarpeqiduliyrecdocaobraysresanednavnaadnndpcdehdidsaissoaeslusovltrevoaem[p1[io]1d.t]li.SyviSencinocaeacneridsnienancecaaarsonsttsdAppAhldalacaiaselslellosdoyleyrvssae,i,pgee[inu1du]stlt.e,yecScatcitsinoicccacieirosssniettnthhnreeocaaleenlsisstdnssegAednnlittsiaisaalollolccvyooesmm,[ep1pu]oo.tnneSeecinntitctcethisiantthcpearsoetvsAsidelneastlilatohlyecso,meuptoencteinctis the e ctohaartsepnroavniddedsistshoenlvenecee[cs1se]a.srsSyairnflytchueaifdlitunitipydcraiiotsnyvttiAdhineelslatihlqtlheoueyidlsin,qseeutacuitdetese,scstattoitarchytaeaics,tfhlittupehoivredoeaievtcaysihdshieeiinngvstheitahtlahecehorlnmimqegcauhpeliosdstnsthaaeserbntryaimtltietfayl,luttishodteiatabsycoihlliiitndeyvifitethehedae elhiuqitguehicdtitchstseatrrtmue,cattluorsetaacbhiliietvye thaehigh th hseolnideicfeiesdsaeruytefclutiicdshsittoyruulicdnturtrehemesaholiloiniquduslitdfiadiebrdelsemteaauattetiesn, ectsrtoitvcaibcaseltcerhtueaiecmttvsupeerereasvroasichlthiueodigrutieehflsimde.tdprheeemrruamtateiuacnlrteiscsstta.sabtbrluielicattytusrtehrsvehicoeutledmrepmeraaitnusretasb. Aerspeoufstesmicbtaicglintyeitmuofdperaantudrhei[g5h].eAr epuotescstibiciltietymopferature afbuoruthtetrwiomoprrdoevresmoefnmt aigs naintutfiducierptahanteedrdihmtihgprhroeourvgeehumtaeencsttuicbistsetaimtnuftputiceiroitrphnaaetuotrerfidemn[tip5ch]krr.ooeAvluegwpmhoiteshansitsrbuaiislrbietsay-teniatotuirfctihpoanmteoedtfanlthiccrekoreuiulgmwh iathsurabrset-iteuatritohnmoef tnalicckeerliuwmith rareeMmaetnertialiss20a2n0t,i1c3i,pxa; tdeModia:tFetrOhiaRrlosP2uE0gE2h0RM, R1aa3Ete,Vsr4iuI5aEl4bsW9s2;t0di2to0ui,:1t1i03o.,3nx3;9od0/fomi:naF1iOc3k2R0e4Pl5E4wEM9RiatRtheEriVraalIsEr2eW0-2e0a, r1t3h, xm; deowit:awFlwOcR.merPdiEupEim.RcoRmE/VjoIuErWnwalw/mwa.mterdipalis.cwomw/wjo.umrndapli/.mcoamte/rjioaulsrnal/materialswww.md doi: FOR PEER REVIEW www.mdpi.com/journal/materials. Materials 2020, 13, x FOR PEER REVIEW [6,7], having the diffusion coefficient in Al lower by approximately four orders of magnitude than thMaattefroiarlsN20i2i0n, 1A3, l45[849]. The idea of using cerium for aluminum alloying, with contents reaching eutectic coormdperossiotifomnsa,gwniatsudinetraondducheigdhoevreeruateccetinctutermy paegroat[u9r,1e0[]5, ]t.hAerepoarsesibstiilliltynoofcfoumrtmheerrcimialparollvoeyms ewnitthis laarngteic-sipcaalteedatphprloicuagthioanss.ubTshteituhtiigohn-oorfdneirckpehl awsiethdriaarger-aemarsthAml–eCtael–cXe1r...inuamre[6s,c7a],rcheavainndg tthheerdeiffius saionn acmobeffiigcuiietnyt sinurArolulonwdienrgbythaeppArol–xCime abtienlyarfyousryostredmers(Foifgmuraegn1iatu).dTehthisanintchlautdfeosr NthieinteAchl [n8o]l.ogically imporAtalnthtoeuugthectthice oidneathoef Ausl-irnigchcesriiduem, Afolr+alAuml11iCneu3m, wailtlhoydinisgc,rewpiathnccieosntiennttshreeaecuhtiencgticeuptoeicntitc ccooomrdpinoasitteisonexsc, ewedasinignt2r0od°Cucaenddo1v0ewr at.%ceonftuCrey(Fagigou[r9e,110b],anthdeTreabalree1s)t.ill no commercial alloys with largTe-hsicsalpeaapperpldiceastciroinbes.s tThheeLhi↔ghA-olrd+eAr lp11hCaes3eeduitaegctriacmtrsaAnslf–oCrme–aXt1io.n. . ninatrheescAalr–cCeeanbdinathryeraelliosyasn waimthbinigauiwtyidseurrraonugnedoifngCethceonAtel–nCtseabloinnagrwy istyhsmteomrp(hFoiglougrye,1car)y.staTlhloisgrianpchluyd, easndthperotepcehrntioelsoogfictahlely siomlipdoifriteadntperuotdecutcict.onThtheeseAld-raictah sairdee, nAele+deAdl11tCoe3e,swtaibthlisdhiscfruenpdaanmcieesnitnaltshefoeruttehceticdpeovineltocpomorednint aotefs mexuclteie-cdoinmgp2o0n◦eCntalnigdh1t 0wweitg.%htoafluCme i(nFuigmuraell1obysanthdaTtaebxlpel1o)r.e the Al–Ce eutectic. TFiagbulere11. aFiwguarsea1daapwtaeds afdroampte[1d1]f.rom [11]

Determination Method Reference
Alloy Casting
Thermal Analysis
Structural Analysis
Mechanical Properties
Thermal Events during Alloy Solidification
Solidification Sequence–Solid Fraction versus Temperature Plot
Effect of Chemical Composition on Alloy Microstructure
Chemistry and Crystallography of Eutectic Phases
Contribution of the Al11Ce3 Phase to Eutectic and Alloy Strengthening
Conclusions
IntrodFuuncdtiionng
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call