Abstract

We show that the reaction mechanism in , and Li/SnO cells is common. During the first discharge, the oxygen bonded to tin (as SnO) reacts with lithium to give metallic tin (which can be present as clusters of a few atoms) and lithia. The tin reacts with further lithium to the composition limit of . During charge the Li is removed from the lithium‐tin alloy. The other components of the glass are inert with respect to lithium, and we call the atoms which make up these phases “spectator atoms.” Using X‐ray diffraction (XRD) and electrochemical methods, we show that size of the initial tin regions which form is inversely proportional to the spectator:Sn atom ratio. However, during cycling, all of these materials show the subsequent aggregation of the tin atoms into clusters which grow with cycle number until they reach a saturated size. The final cluster size is larger for materials with smaller X:Sn ratio. We propose a speculative model, which predicts the saturated Sn cluster size, as a function of the spectator:Sn ratio. © 1999 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.