Abstract
Manipulation of spheres of ice and observations of ice crystals colliding with a fixed crystal under conditions of controlled temperature and vapor pressure have been employed to determine the limiting conditions for the aggregation of ice crystals to form snow flakes. It is shown that the amount of aggregation is strongly dependent upon environmental vapor pressure and temperature. At ice saturation, no aggregation occurs at temperatures below −25C and aggregation increases and becomes a maximum as 0C is approached. At vapor pressure less-than-ice saturation no aggregation occurs at temperatures below −4C and aggregation increases rapidly as 0C is approached. Under conditions of supersaturation with respect to ice, aggregation occurs at all temperatures. These results are best explained by the existence of a liquid film on the surface of ice at temperatures below 0C where the thickness of the film is a function of temperature and vapor presuure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.