Abstract

We consider a class of non-supersymmetric gauge theories obtained by orbifolding the N=4 super-Yang–Mills theories. We focus on the resulting quiver theories in their deconstructed phase, both at small and large coupling, where a fifth dimension opens up. In particular, we investigate the rôle played by this extra dimension when evaluating the rectangular Wilson loops encoding the interaction potential between quarks located at different points in the orbifold. The large coupling potential of the deconstructed quiver theory is determined using the AdS/CFT correspondence and analysing the corresponding minimal surface solution for the dual gravitational metric. At small coupling, the potential between quarks decreases with their angular distance while at strong coupling we find a linear dependence at large distance along the (deconstructed) fifth dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.