Abstract

A technique that provides closed loop integral action depending on the passive outputs of port-controlled Hamiltonian systems is already available. This paper addresses a new method that allows us to add integral action also on system variables having relative degree higher than one, while still preserving the Hamiltonian form and, thus, closed loop stability. The new approach is applied to design speed regulation controllers for the permanent magnet synchronous motor. Closed loop stability and asymptotic rejection of unknown piecewise constant load torques are formally proved. This theoretically predicted control system performance is illustrated via simulation experiments, which also show that the properties hold under parameter uncertainties. This is in line with the usual practice of including integral action in a controller with the aim of improving its closed loop robustness. The fact that the method enhances the range of possible integral actions in the controller, enriched with this robustness property, allows us to assess it as a practically important complement to the well-known interconnection and damping assignment techniques developed in the framework of port-controlled Hamiltonian systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call