Abstract

This paper studies the estimation of a density in the convolution density model from strong mixing observations. The ordinary smooth case is considered. Adopting the minimax approach under the mean integrated square error over Besov balls, we explore the performances of two wavelet estimators: a linear one based on projections and a non-linear one based on a hard thresholding rule. The feature of the non-linear one is to be adaptive, i.e., it does not require any prior knowledge of the smoothness class of the unknown density in its construction. We prove that it attains a fast rate of convergence which corresponds to the optimal one obtained in the standard i.i.d. case up to a logarithmic term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.