Abstract

Aphelion distances of the known periodic comets in the range 12–26 AU are analyzed. The aphelia of 12 of the 38 known comets are found to be concentrated at 19.23–20.91 AU, i.e., near the heliocentric distance of Uranus, which seems unlikely to be a coincidence. It is shown by testing that there is also a significant redundancy of distant nodes of the periodic comets’ orbits in the region of motion of Uranus. This is confirmed by the analysis of the MOIDs in the comet-Uranus system. The values of the Tisserand constant for some of the comets exhibit less dispersion relative to Uranus than to Saturn, Jupiter, and the Earth. We selected 20 long-period comets with distant nodes near the region of motion of Uranus. It is shown that, given a uniform spatial distribution, there must be 12 such nodes. Considering the distant nodes and the MOIDs, the planet is likely to have a dynamical connection with the selected group of comets. The distant nodes and perihelia of both periodic and long-period comets are found to be redundant in the directions 76° and 256°, which is qualitatively consistent with the hypothesis of eruptive origin of comets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call