Abstract

The acoustic characteristics of microbubbles created from vaporized submicron perfluorocarbon droplets with fluorosurfactant coating are examined. Utilizing ultra-high-speed optical imaging, the acoustic response of individual microbubbles to low-intensity diagnostic ultrasound was observed on clinically relevant time scales of hundreds of milliseconds after vaporization. It was found that the vaporized droplets oscillate non-linearly and exhibit a resonant bubble size shift and increased damping relative to uncoated gas bubbles due to the presence of coating material. Unlike the commercially available lipid-coated ultrasound contrast agents, which may exhibit compression-only behavior, vaporized droplets may exhibit expansion-dominated oscillations. It was further observed that the non-linearity of the acoustic response of the bubbles was comparable to that of SonoVue microbubbles. These results suggest that vaporized submicron perfluorocarbon droplets possess the acoustic characteristics necessary for their potential use as ultrasound contrast agents in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.