Abstract

This paper investigates the data gain brought by the multiple-input-multiple-output (MIMO) principle for underwater acoustic (UWA) communication. By considering a class of acoustic MIMO channels where each fading coefficient is modeled by a Rice distribution law with correlation factor depending on channel Doppler spread, we derive the achievable rate of such system that takes into account both channel estimation error and training sequence overhead. Model parameters are then estimated from an experiment campaign in a MIMO shallow water channel conducted in the roadstead of Brest, France. The system achievable rate is evaluated for several MIMO architectures and channel configurations and then compared against the conventional single-input-multiple-output transmission. The achievable rate gain is finally put in perspective with end-to-end data rate performance of a single-carrier MIMO transmission system experimented at sea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.