Abstract

Two fundamental difficulties are encountered in the numerical evaluation of time-dependent layer potentials. One is the quadratic cost of history dependence, which has been successfully addressed by splitting the potentials into two parts - a local part that contains the most recent contributions and a history part that contains the contributions from all earlier times. The history part is smooth, easily discretized using high-order quadratures, and straightforward to compute using a variety of fast algorithms. The local part, however, involves complicated singularities in the underlying Green's function. Existing methods, based on exchanging the order of integration in space and time, are able to achieve high order accuracy, but are limited to the case of stationary boundaries. Here, we present a new quadrature method that leaves the order of integration unchanged, making use of a change of variables that converts the singular integrals with respect to time into smooth ones. We have also derived asymptotic formulas for the local part that lead to fast and accurate hybrid schemes, extending earlier work for scalar heat potentials and applicable to moving boundaries. The performance of the overall scheme is demonstrated via numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.