Abstract

The introduction of the unencrypted global positioning system (GPS) L2 civil (L2C) signal has the potential to improve measurements made with the L2 frequency, an important observable in GPS-based ionospheric research and monitoring. Recent work has shown significant differences between the legacy L2P(Y) and L2C-derived total electron content rate of change index (ROTI). This difference is observed between L2P(Y) and L2C-derived ROTI with certain receiver models and between zero-baseline receiver pairs. We discuss the likely cause for these differences: L1-aided tracking used to track both the L2P(Y) and L2C signals. We also present L2C data that are confirmed to be from tracking independent of L1. Using the ionospheric-free linear combination, we show that the independently tracked carrier phase dynamics are significantly more accurate than the L1-aided observables. This result is confirmed by comparing the behavior of the L2C and L2P(Y) carrier phase observables upon a sudden antenna rotation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.