Abstract

We propose to perform turbulent flow simulations in such a manner that the difference operators do have the same symmetry properties as the underlying differential operators, i.e. the convective operator is represented by a skew-symmetric matrix and the diffusive operator is approximated by a symmetric, positive-definite matrix. Such a symmetry-preserving discretization of the Navier-Stokes equations is stable on any grid, and conserves the total mass, momentum and kinetic energy (when the physical dissipation is turned off). Its accuracy is tested for a turbulent channel flow at Re=5,600 (based on the channel width and the mean bulk velocity) by comparing the results to those of physical experiments and previous numerical studies. This comparison shows that with a fourth-order, symmetry-preserving method a 64 × 64 × 32 grid suffices to perform an accurate direct numerical simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.