Abstract

We have investigated the accuracy of Rüger's approximation for PP reflection coefficients in HTI media (relative to an exact generalization of Zoeppritz to anisotropy derived by Schoenberg and Protazio) within the context of seismic fracture characterization. We consider the inverse problem of seismic amplitude-versus-angle and azimuth (AVAZ) inversion with respect to fracture density and azimuthal fracture orientation, as well as the forward problem of calculating PP reflection coefficients for different contrasts and anisotropy levels. The T-matrix approach was used to relate the contrast and anisotropy level to the parameters of the fractures (in the case of a single set of vertical fractures). We have found that Rüger's approximation can be used to recover the true fracture density with small uncertainty if, and only if, the fracture density and contrast are significantly smaller than the values that are believed to occur in many practically interesting cases of fractured (carbonate) reservoirs. In one example involving a minimal contrast and a fracture density in the range 0.05–0.1, Rüger's approximation performed satisfactorily for inversion, although the forward modelling results were not very accurate at high incident angles. But for fracture densities larger than 0.1 (which we believe may well occur in real cases), Rüger's approximation did not perform satisfactorily for forward or inverse modelling. However, it appears that Rüger's approximation can always be used to obtain estimates of the azimuthal fracture orientation with small uncertainty, even when the contrast and anisotropy levels are extremely large. In order to illustrate the significance of our findings within the context of seismic fracture characterization, we analysed a set of synthetic seismic AVAZ data associated with a fault facies model where the fracture density decreases exponentially with distance from the fault core, and a set of real seismic AVAZ data involving offset-averaged (root mean square) maps for six azimuthal sectors. Our results suggest that the difference between the maps of inverted fracture densities (which partially determines the effective permeability) obtained using Rüger's approximation can be very different from those obtained using the exact reflection coefficients; but Rüger's approximation can still be used to obtain qualitative information about the trends in the spatial distribution of fractures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call