Abstract

The weakly reflective wave generation is a wave generation and absorption method in phase-resolving models, based on the assumption that the waves propagating towards the wave generation boundary are small amplitude shallow water waves with direction perpendicular to the boundary. This assumption makes the method weakly reflective for dispersive and directional waves. The internal wave generation method was proposed by Vasarmidis et al. (2019b) as an alternative, for the non-hydrostatic wave model, SWASH, to avoid reflections. In this study, a comparison is made between the performance of the new internal wave generation method and the weakly reflective wave generation method. It is shown that using the internal wave generation leads to a significantly more accurate prediction of the resulting wave field in case of waves reflected back to the numerical boundary. Additionally, the internal wave generation method is extended to short-crested waves and SWASH is validated for the first time with experimental data for the cases of wave propagation over a shoal and wave diffraction around a wall. The proposed extended internal wave generation method increases the capability of SWASH towards the study of wave propagation of highly dispersive short-crested waves in coastal environments with minimal reflection from the boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call