Abstract
In this article, dispersion of a 60MeV proton pencil beam at various depths in a muscle tissue was numerically investigated via solving a three dimensional Fokker–Planck equation using homotopy perturbation method (HPM) and variational iteration method (VIM). The accuracy of these methods was benchmarked by comparison the radial flux distribution of protons traversing different depths in the tissue with the data of the High Charge and Energy Transport (HZETRN) model and Monte Carlo simulations. Furthermore, the computed depth dose distributions obtained from the HPM and VIM for monoenergetic protons passing through a medium were compared with the results of GEANT4.5.2 code as well as the experimental data reported in the literature. The satisfactory agreement obtained from our computations shows the reliability and applicability of the HPM and VIM in our analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.