Abstract

Deterministic Economic Order Quantity (EOQ) models have been studied intensively in the literature, where the demand process is described by an ordinary differential equation, and the objective is to obtain an EOQ, which minimizes the total cost per unit time. The total cost per unit time consists of a “discrete” part, the setup cost, which is incurred at the time of ordering, and a “continuous” part, the holding cost, which is continuously accumulated over time. Quite formally, such deterministic EOQ models can be viewed as fluid approximations to the corresponding stochastic EOQ models, where the demand process is taken as a stochastic jump process. Suppose now an EOQ is obtained from a deterministic model. The question is how well does this quantity work in the corresponding stochastic model. In the present paper we justify a translation of EOQs obtained from deterministic models, under which the resulting order quantities are asymptotically optimal for the stochastic models, by showing that the difference between the performance measures and the optimal values converges to zero with respect to a scaling parameter. Moreover, we provide an estimate for the rate of convergence. The same issue regarding specific Economic Production Quantity (EPQ) models is studied, too.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call