Abstract

ABSTRACT We present a comparative study of the accuracy and precision of correlation function methods and full-field inference in cosmological data analysis. To do so, we examine a Bayesian hierarchical model that predicts lognormal (LN) fields and their two-point correlation function. Although a simplified analytic model, the LN model produces fields that share many of the essential characteristics of the present-day non-Gaussian cosmological density fields. We use three different statistical techniques: (i) a standard likelihood-based analysis of the two-point correlation function; (ii) a likelihood-free (simulation-based) analysis of the two-point correlation function; (iii) a field-level analysis, made possible by the more sophisticated data assimilation technique. We find that (a) standard assumptions made to write down a likelihood for correlation functions can cause significant biases, a problem that is alleviated with simulation-based inference; and (b) analysing the entire field offers considerable advantages over correlation functions, through higher accuracy, higher precision, or both. The gains depend on the degree of non-Gaussianity, but in all cases, including for weak non-Gaussianity, the advantage of analysing the full field is substantial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call