Abstract
The Eta Ferrier cloud microphysics scheme is a sophisticated cloud microphysics module in the Weather Research and Forecasting (WRF) model. In this paper, we present the approach and the results of accelerating the Eta Ferrier microphysics scheme on NVIDIA Graphics Processing Units (GPUs). We discuss how our GPU implementation takes advantage of the parallelism in Eta Ferrier scheme, leading to a highly efficient GPU acceleration. We implement the Eta Ferrier microphysics scheme on NVidia GTX 590 GPU. Our 1-GPU implementation achieves an overall speedup of 37 as compared with a single thread CPU. Since Eta Ferrier microphysics scheme is only an intermediate module of the entire WRF model, the GPU I/O should not occur, i.e. its input data should be already available in the GPU global memory from previous modules and its output data should reside at the GPU global memory for later usage by other modules. The speedup without the host-device data transfer time is 272 with respect to its serial version running on 3.20GHz Intel® CoreTM i7 970 CPU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.