Abstract

For the Wiener, Ornstein–Uhlenbeck, and Feller processes, we study the transition probability density functions with an absorbing boundary in the zero state. Particular attention is paid to the proportional cases and to the time-homogeneous cases, by obtaining the first-passage time densities through the zero state. A detailed study of the asymptotic average of local time in the presence of an absorbing boundary is carried out for the time-homogeneous cases. Some relationships between the transition probability density functions in the presence of an absorbing boundary in the zero state and between the first-passage time densities through zero for Wiener, Ornstein–Uhlenbeck, and Feller processes are proven. Moreover, some asymptotic results between the first-passage time densities through zero state are derived. Various numerical computations are performed to illustrate the role played by parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.