Abstract

ABSTRA C T We show that recently published assertions that advection-dominated accretion flows (ADAFs) require the presence of strong winds are unfounded because they assume that low radiative efficiency in flows accreting at low rates on to black holes implies vanishing radial energy and angular momentum fluxes through the flow (which is also formulated in terms of the ‘Bernoulli function’ being positive). This, however, is a property only of self-similar solutions which are an inadequate representation of global accretion flows. We recall general properties of accretion flows on to black holes and show that such, necessarily transonic, flows may have either d positive or negative Bernoulli function depending on the flow viscosity. Flows with low viscosities Oa & 0:1 in the a-viscosity model) have a negative Bernoulli function. Without exception, all 2D and 1D numerical models of low-viscosity flows constructed to date experience no significant outflows. At high viscosities the presence of outflows depends on the assumed viscosity, on the equation of state and on the outer boundary condition. The positive sign of the Bernoulli function invoked in this context is irrelevant to the presence of outflows. As an illustration, we recall 2D numerical models with moderate viscosity that have positive values of the Bernoulli function and experience no outflows. ADAFs, therefore, do not differ from this point of view from thin Keplerian discs: they may have, but they do not have to have, strong winds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.