Abstract

In this paper, we report on the possibility of using particle-based Monte Carlo (MC) techniques to incorporate all relevant quantum effects in the simulation of semiconductor nanotransistors. Starting from the conventional MC approach within the semiclassical Boltzmann approximation, we develop a multisubband description of transport to include quantization in ultrathin-body devices. This technique is then extended to the particle simulation of quantum transport within the Wigner formulation. This new simulator includes all expected quantum effects in nanotransistors and all relevant scattering mechanisms, which are taken into account the same way as in Boltzmann simulation. This paper is illustrated by analyzing the device operation and performance of multigate nanotransistors in a convenient range of channel lengths and thicknesses to separate the influence of all relevant effects: Significant quantization effects occur for thickness smaller than 5 nm and wave-mechanical-transport effects manifest themselves for channel length smaller than 10 nm. We also show that scattering mechanisms still have an important influence in nanoscaled double-gate transistors, both in the intrinsic part of the channel and in the resistive lateral extensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call