Abstract

It is common knowledge that relatively small drops or bubbles have a tendency to stick to the surfaces of solids. Two specific problems are investigated: the shape of the largest drop or bubble that can remain attached to an inclined solid surface; and the shape and speed at which it moves along the surface when these conditions are exceeded. The slope of the fluid-fluid interface relative to the surface of the solid is assumed to be small, making it possible to obtain results using analytic techniques. It is shown that from both a physical and mathematical point of view contact-angle hysteresis, i.e. the ability of the position of the contact line to remain fixed as long as the value of the contact angle θ lies within the interval θR [les ] θ [les ] θA, where θA [nequiv ] θR, emerges as the single most important characteristic of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.