Abstract
Let \(k=Q({\sqrt d,\sqrt{-q}})\) be an imaginary biquadratic number field with Clk,2, the 2-class group of k, isomorphic to Z/2Z × Z/2mZ, m > 1, with q a prime congruent to 3 mod 4 and d a square-free positive integer relatively prime to q. For a number of fields k of the above type we determine if the 2-class field tower of k has length greater than or equal to 2. To establish these results we utilize capitulation of ideal classes in the three unramified quadratic extensions of k, ambiguous class number formulas, results concerning the fundamental units of real biquadratic number fields, and criteria for imaginary quadratic number fields to have 2-class field tower length 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.