Abstract
In this paper, we investigate large time behavior of global‐in‐time strong solution to the three‐dimensional compressible flow of nematic liquid crystal with low regularity assumptions on initial datum. More precisely, we show that the negative Besov space ‐norms (s ≥ 0) of solution are preserved along time evolution; by using this fact together with the conventional energy estimates in Besov space framework and the interpolation inequalities, we establish that, for the initial perturbation just small in homogeneous Besov space , the global‐in‐time strong solution to the Cauchy problem of the compressible flow of nematic liquid crystal has the following optimal temporal decay rate: urn:x-wiley:mma:media:mma5176:mma5176-math-0004 provided that we further assume that still belongs to . Here, is a constant unite vector. To illustrate our methods clearly, we also revisit the optimal temporal decay of solutions to the heat equation in the framework of Besov space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Mathematical Methods in the Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.