Abstract

The tangent cones of an inner metric Alexandrov space with finite Hausdorff dimension and a lower curvature bound are always inner metric spaces with nonnegative curvature. In this paper we construct an infinite-dimensional inner metric Alexandrov space of nonnegative curvature which has in one point a tangent cone whose metric is not an inner metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.