Abstract

AbstractFor an odd prime number p and a finite set S of prime numbers congruent to 1 modulo p, we consider the Galois group of the maximal pro-p-extension unramified outside S over the ${\mathbb Z}_p$-extension of the rational number field. In this paper, we classify all S such that the Galois group is a metacyclic pro-p group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.