Abstract

We consider a multivariate distributional recursion of sum type, as arises in the probabilistic analysis of algorithms and random trees. We prove an upper tail bound for the solution using Chernoff's bounding technique by estimating the Laplace transform. The problem is traced back to the corresponding problem for binary search trees by stochastic domination. The result obtained is applied to the internal path length and Wiener index of randomb-ary recursive trees with weighted edges and random linear recursive trees. Finally, lower tail bounds for the Wiener index of these trees are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.