Abstract

Building expertise profiles is a crucial step towards identifying experts in different knowledge areas. However, summarizing the topics of expertise of a given individual is a challenging task, primarily due to the semi-structured and heterogeneous nature of the documentary evidence available for this task. In this paper, we investigate the suitability of tag recommendation as a mechanism to produce effective expertise profiles. In particular, we perform a large-scale user study with academic experts from different knowledge areas to assess the effectiveness of multiple supervised and unsupervised tag recommendation approaches as well as multiple sources of textual evidence. Our analysis reveals that traditional content-based tag recommenders perform well at identifying expertise-oriented tags, with article keywords being a particularly effective source of evidence across profiles in different knowledge areas and with various levels of sparsity. Moreover, by combining multiple recommenders and sources of evidence as learning signals, we further demonstrate the effectiveness of tag recommendation for expertise profiling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.