Abstract

A remarkable feature of chaos in many-body quantum systems is the existence of a bound on the quantum Lyapunov exponent. An important question is to understand what is special about maximally chaotic systems which saturate this bound. Here we provide further evidence for the ‘hydrodynamic’ origin of chaos in such systems, and discuss hallmarks of maximally chaotic systems. We first provide evidence that a hydrodynamic effective field theory of chaos we previously proposed should be understood as a theory of maximally chaotic systems. We then emphasize and make explicit a signature of maximal chaos which was only implicit in prior literature, namely the suppression of exponential growth in commutator squares of generic few-body operators. We provide a general argument for this suppression within our chaos effective field theory, and illustrate it using SYK models and holographic systems. We speculate that this suppression indicates that the nature of operator scrambling in maximally chaotic systems is fundamentally different to scrambling in non-maximally chaotic systems. We also discuss a simplest scenario for the existence of a maximally chaotic regime at sufficiently large distances even for non-maximally chaotic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.