Abstract
Linear programming methods for discrete l/sup 1/ approximation are used to provide solutions to problems of approximate identification with state space models and to problems of model validation for stable uncertain systems. Choice of model structure is studied via Kolmogorov n-width concept and a related n-width concept for state space models. Several results are given for FIR, Laguerre and Kautz models concerning their approximation properties in the space of bounded-input bounded-output (BIBO) stable systems. A robust convergence result is given for a modified least sum of absolute deviations identification algorithm for BIBO stable linear discrete-time systems. A simulation example with identification of Kautz models and subsequent model validation is given. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.