Abstract

<abstract><p>The paper concerns the analysis of global minimizers of a Dirichlet-type energy functional in the class of $ \mathbb{S}^2 $-valued maps defined in cylindrical surfaces. The model naturally arises as a curved thin-film limit in the theories of nematic liquid crystals and micromagnetics. We show that minimal configurations are $ z $-invariant and that energy minimizers in the class of weakly axially symmetric competitors are, in fact, axially symmetric. Our main result is a family of <italic>sharp</italic> Poincaré-type inequality on the circular cylinder, which allows for establishing a nearly complete picture of the energy landscape. The presence of symmetry-breaking phenomena is highlighted and discussed. Finally, we provide a complete characterization of in-plane minimizers, which typically appear in numerical simulations for reasons we explain.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call