Abstract

Abstract Model studies of two-dimensional, time-dependent, wind-forced, stratified downwelling circulation on the continental shelf have shown that the near-bottom offshore flow can develop time- and space-dependent fluctuations involving spatially periodic separation and reattachment of the bottom boundary layer and accompanying recirculation cells. Based primarily on the observation that the potential vorticity Π, initially less than zero everywhere, is positive in the region of the fluctuations, this behavior was identified as finite amplitude slantwise convection resulting from a symmetric instability. To further support that identification, a direct stability analysis of the forced, time-dependent, downwelling circulation would be useful, but is difficult because the instabilities develop as an integral part of the evolving flow field. The objectives of the present study are 1) to examine the linear stability of a near-bottom oceanic flow over sloping topography with conditions dynamically similar to...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.