Abstract

We discuss the application of Mathematica for automated, symbolic calculation of the cumulant equations of arbitrary order. Like moment equations, these partial differential equations—describing fluid motion on a mesoscopic scale—may be considered an approximation to the Boltzmann equation, a highly nonlinear integro-differential equation that describes the motion of gases at a microscopic scale. Though the cumulant method provides a simple and compact presentation of the theory, actual calculation of very high order equations turns out to be a challenging task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.