Abstract
This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following functional equation, 0.1∑i=1nγiF(aix+biy)=∑j=1m(αjx+βjy)f(cjx+djy),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \ extstyle \\sum \\limits _{i=1}^n \\gamma _i F(a_i x + b_i y)=\ extstyle \\sum \\limits _{j=1}^m(\\alpha _j x + \\beta _j y) f(c_j x + d_j y), \\end{aligned}$$\\end{document}for all x,y∈R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x,y\\in \\mathbb {R}$$\\end{document}, γi,αj,βj∈R,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma _i,\\alpha _j,\\beta _j \\in \\mathbb {R},$$\\end{document} and ai,bi,cj,dj∈Q,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$a_i,b_i,c_j,d_j \\in \\mathbb {Q},$$\\end{document} and their special forms. The primary motivation for writing such a computer code is that solving even simple equations belonging to class (0.1) needs long and tiresome calculations. Therefore, one of the advantages of such a computer code is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally, the computer code will significantly improve the level of accuracy in calculations. Along with that, there is also the factor of speed. We point out that the computer code will operate with symbolic calculations provided by the programming language Python, which means that it does not contain any numerical or approximate methods, and it yields the exact solutions of the equations considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.