Abstract

We consider a general nonlinear regression problem where the predictors contain measurement error. It has been recently discovered that several well-known dimension reduction methods, such as OLS, SIR and pHd, can be performed on the surrogate regression problem to produce consistent estimates for the original regression problem involving the unobserved true predictor. In this paper we establish a general invariance law between the surrogate and the original dimension reduction spaces, which implies that, at least at the population level, the two dimension reduction problems are in fact equivalent. Consequently we can apply all existing dimension reduction methods to measurement error regression problems. The equivalence holds exactly for multivariate normal predictors, and approximately for arbitrary predictors. We also characterize the rate of convergence for the surrogate dimension reduction estimators. Finally, we apply several dimension reduction methods to real and simulated data sets involving measurement error to compare their performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.