Abstract

We study projective surfaces $X \subset \mathbb{P}^r$ (with $r \geq 5$) of maximal sectional regularity and degree $d > r$, hence surfaces for which the Castelnuovo-Mumford regularity $\operatorname{reg}(\mathcal{C})$ of a general hyperplane section curve $\mathcal{C} = X \cap \mathbb{P}^{r-1}$ takes the maximally possible value $d-r+3$. We use the classification of varieties of maximal sectional regularity of [5] to see that these surfaces are either particular divisors on a smooth rational $3$-fold scroll $S(1,1,1) \subset \mathbb{P}^5$, or else admit a plane $\mathbb{F} = \mathbb{P}^2 \subset \mathbb{P}^r$ such that $X \cap \mathbb{F} \subset \mathbb{F}$ is a pure curve of degree $d-r+3$. We show that our surfaces are either cones over curves of maximal regularity, or almost non-singular projections of smooth rational surface scrolls. We use this to show that the Castelnuovo-Mumford regularity of such a surface $X$ satisfies the equality $\operatorname{reg}(X) = d-r+3$ and we compute or estimate various cohomological invariants as well as the Betti numbers of such surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.