Abstract
AbstractUnlike intrinsically conductive organic polymers, which are central to organic electronics/photovoltaics, metallopolymers contain multiple redox‐active centers allowing extra control of their intriguing properties. Ferrocene polymers are particularly attractive in this regard, but research of the iconic poly(1,1′‐ferrocenylene), a main‐chain ferrocene polymer with the most densely bound redox‐active iron centers, has practically stopped because it is an insoluble and rather inhomogeneous material. Herein, its synthesis on the Ag(111) surface is reported, based on the Ullmann coupling of 1′,1″′‐diiodo‐1,1″‐biferrocene. Conformationally flexible single‐chain nanowires up to 50 nm in length, thus overcoming the limits of conventional solution polymerization, are characterized by scanning probe microscopy techniques achieving atomic resolution. Single‐chain electrical conductivity measurements are performed in the longitudinal directions revealing apparent metal‐to‐semiconductor transition (depending on the number of ferrocene units lifted from the surface). A simple transport model is established to rationalize this observation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.