Abstract

π-Conjugated molecules are viewed as fundamental components in forthcoming molecular nanoelectronics in which semiconducting functional units are linked to each other via metallic molecular wires. However, it is still challenging to construct such block cooligomers on the surface. Here, we present a synthesis of [18]-polyene-linked Zn-porphyrin cooligomers via a two-step reaction of the alkyl groups on Cu(111) and Cu(110). Nonyl groups (-C9H19) substituted at the 5,15-meso positions of Zn-porphyrin were first transformed to alkenyl groups (-C9H10) by dehydrogenation. Subsequently, homocoupling of the terminal -CH2 groups resulted in the formation of extended [18]-polyene-linked porphyrin cooligomers. The structures of the products at each reaction step were investigated by bond-resolved scanning tunneling microscopy at low temperatures. A combination of angle-resolved photoemission spectroscopy and density functional theory calculations revealed the metallic property of the all trans [18]-polyene linker on Cu(110). This finding may provide an approach to fabricate complex nanocarbon structures on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.